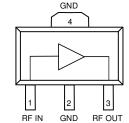


Product Features

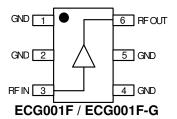
- DC 6 GHz
- +12.5 dBm P1dB at 1 GHz
- +25 dBm OIP3 at 1 GHz
- 22 dB Gain at 1 GHz
- 3.4 dB Noise Figure at 2 GHz
- Available in lead-free / green SOT-89 / SOT-363 pkg styles
- Internally matched to 50 Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless


Product Description

The ECG001 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1000 MHz, the ECG001 typically provides 22 dB of gain, +25 dBm Output IP3, and +12.5 dBm P1dB.


The ECG001 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation. The device is ideal for wireless applications and is available in a low-cost, surface-mountable lead-free/green/RoHS-compliant SOT-89 or SOT-363 package. All devices are 100% RF and DC tested.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the ECG001 will work for other various applications within the DC to 6 GHz frequency range such as CATV and fixed wireless.

Functional Diagram

ECG001B / ECG001B-G

Specifications (1)

Operational Bandwidth MHz DC 6000 Test Frequency MHz 1000 Gain dB 22.2 Output P1dB dBm +12.5 Output IP3 (2) dBm +25	Parameter	Units	Min	Тур	Max
Gain dB 22.2 Output P1dB dBm +12.5	Operational Bandwidth	MHz	DC		6000
Output P1dB dBm +12.5	Test Frequency	MHz		1000	
	Gain	dB		22.2	
Output IP3 (2) dBm +25	Output P1dB	dBm		+12.5	
	Output IP3 (2)	dBm		+25	
Test Frequency MHz 2000	Test Frequency	MHz		2000	
Gain dB 20.45 21.2 21.95	Gain	dB	20.45	21.2	21.95
Input Return Loss dB 35	Input Return Loss	dB		35	
Output Return Loss dB 18	Output Return Loss	dB		18	
Output P1dB dBm +12.5	Output P1dB	dBm		+12.5	
Output IP3 (2) dBm +23 +25	Output IP3 (2)	dBm	+23	+25	
Noise Figure dB 3.4 4	Noise Figure	dB		3.4	4
Device Voltage V 3.0 3.4 3.8	Device Voltage	V	3.0	3.4	3.8
Device Current mA 30	Device Current	mA		30	

^{1.} Test conditions unless otherwise noted: 25° C, Supply Voltage = +5 V, Rbias = 51 Ω , 50 Ω System.

Absolute Maximum Rating

Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-55 to +150 °C
Device Current	150 mA
RF Input Power (continuous)	+12 dBm
Junction Temperature	+250 °C

Operation of this device above any of these parameters may cause permanent damage.

Typical Performance (4)

Parameter	Units	Typical						
Frequency	MHz	500	900	1900	2140			
S21	dB	22.6	22.4	21.4	21.0			
S11	dB	-46	-42	-35	-29			
S22	dB	-29	-24	-18	-17			
Output P1dB	dBm	+12	+12.5	+12.5	+12.5			
Output IP3 (2)	dBm	+23	+25	+26	+26			
Noise Figure	dB	3.4	3.4	3.4	3.4			

^{4.} Test conditions: T = 25° C, Supply Voltage = +5 V, Device Voltage = +3.4V, R_{bias} = 51 Ω , 50 Ω System.

Ordering Information

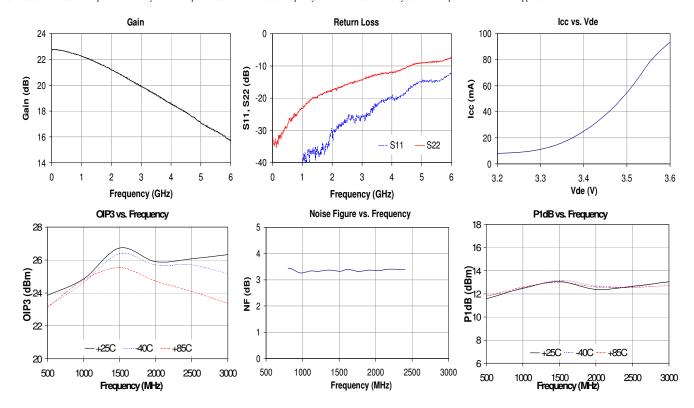
Part No.	Description
ECG001B (4)	InGaP HBT Gain Block (lead-tin SOT-89 Pkg)
ECG001B-G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-89 Pkg)
ECG001C (5)	InGaP HBT Gain Block (lead-tin SOT-86 Pkg)
ECG001F (5)	InGaP HBT Gain Block (lead-tin SOT-363 Pkg)
ECG001F-G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-363 Pkg)
ECG001B-PCB	700 – 2400 MHz Fully Assembled Eval. Board
ECG001F-PCB	700 – 2400 MHz Fully Assembled Eval. Board

This package is being phased out in favor of the green package type which is backward compatible for existing designs. Refer to Product Change Notification WJPCN06MAY05TC1 on the WJ website

Specifications and information are subject to change without notice

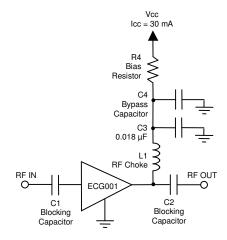
 ³OIP measured with two tones at an output power of -1 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

This package style is not recommended for new designs. Refer to Product Obsolescence Notification WJOBS22APR05TC1. The ECG001B-G or AG303-86G is recommended as a suitable replacement.

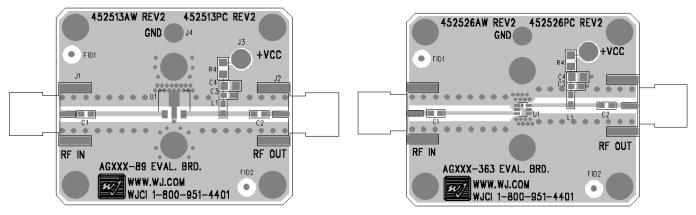


Typical Device RF Performance Supply Bias = +5 V, R_{bias} = 51 Ω , I_{cc} = 30 mA

Frequency	MHz	100	500	900	1900	2140	2400	3500	5800
S21	dB	22.8	22.6	22.4	21.4	21.0	20.7	19.2	16.1
S11	dB	-48	-46	-42	-35	-29	-28	-22	-14
S22	dB	-34	-29	-24	-18	-17	-16	-13	-8
Output P1dB	dBm	+11.6	+11.6	+12.6	+12.6	+12.6	+12.8	+12.2	+11
Output IP3	dBm	+23.6	+23.5	+24.8	+26	+25.6	+25.4	+23	
Noise Figure	dB	3.4	3.4	3.4	3.4	3.4	3.4		


- 1. Test conditions: $T = 25^{\circ}$ C, Supply Voltage = +5 V, Device Voltage = +3.4 V, Rbias = 51 Ω , Icc = 30 mA typical, 50 Ω System.
- 2. 30IP measured with two tones at an output power of -1 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.

 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.



Recommended Application Circuit

ECG001B-PCB

ECG001F-PCB

Recommended Component Values

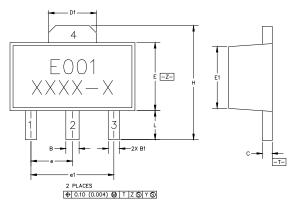
Reference	Frequency (MHz)							
Designator	50	500	900	1900	2200	2500	3500	
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH	
C1, C2, C4	.018 μF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF	

- 1. The proper values for the components are dependent upon the intended frequency of operation.
- 2. The following values are contained on the evaluation board to achieve optimal broadband performance:

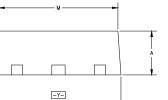
Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 μF chip capacitor	0603
C4	Do Not Place	
R4	51Ω 1% tolerance	0805

Recommended Bias Resistor Values

Supply Voltage	R1 value	Size
5 V	53.3 ohms	0805
6 V	86.7 ohms	0805
8 V	153 ohms	1210
9 V	187 ohms	1210
10 V	220 ohms	2010
12 V	287 ohms	2010


The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +5 V. A 1% tolerance resistor is recommended.

Product Information


ECG001B (SOT-89 Package) Mechanical Information

This package may contain lead-bearing materials. The plating material on the leads is SnPb

Outline Drawing

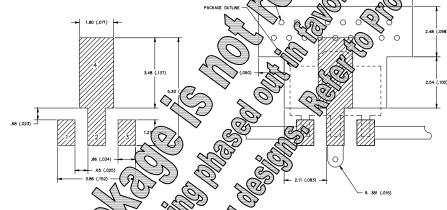
SYMBOL	MIN	MAX		
A	1.40 (.055)	1.60 (.063)		
В	.44 (.017)	.56 (.022)		
B1	.36 (.014)	.48 (.019)		
С	.35 (.014)	.44 (.017)		
D	4.40 (.173)	4.60 (.181)		
D1	1.62 (.064)	1.83 (.072)		
E	2.29 (.079)	2.60 (.102)		
E1	2.13 (.084)	2.29 (.090)		
e	1.50 BSC (.059)			
e1	3.00 BSC (,118)			
н	3.94 (.155)	(.16)		
	.89	1.20		

NOTES:

Land Patter

- 2. DIMENSIONS ARE EXPRESSED

The compoi

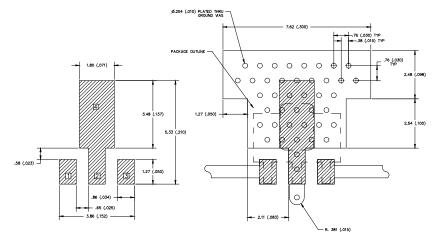

SD sensitive device.

Passes between 250 and 500V Human Body Model (HBM) JEDEC Standard JESD22-A114

Rating: Level 3 at +235° C convection reflow JEDEC Standard J-STD-020

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter
- drill and have a final plated thru diameter of .25 mm (.010").

 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
 RF trace width depends upon the PC board material and
- construction.
- Use 1 oz. Copper minimum. All dimensions are in millimeters (inches). Angles are in



ECG001B-G (Green / Lead-free SOT-89 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.

Land Pattern

Product Marking

The component will be marked with an "E001G" designator with an alphanumeric lot code on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

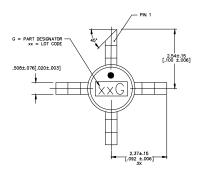
ESD Rating: Class 1A

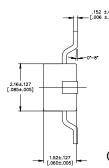
Value: Passes between 250 and 500V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

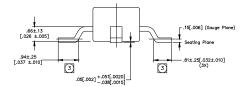
MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

Product Information


′a "G"


of


for this part are the "Application

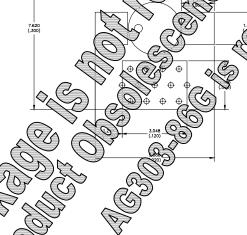
ECG001C (SOT-86 Package) Mechanical Information

Outline Drawing

MS ESD Rating

aution! ESD sensitive device.

ESDC ating: Class 1A

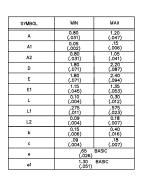

Passes between 250 and 500V Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114

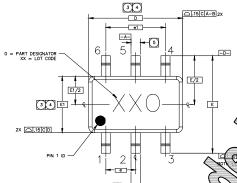
MSL Rating: Level 1 at +235° C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

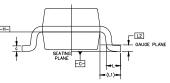
- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010")
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.5. RF trace width depends upon the PC board material and
- RF trace width depends upon the PC board material an construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

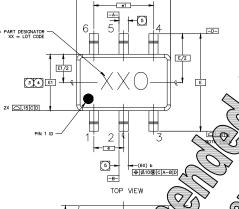
Land Patte





ECG001F (SOT-363 Package) Mechanical Information


This package may contain lead-bearing materials. The plating material on the leads


Outline Drawing

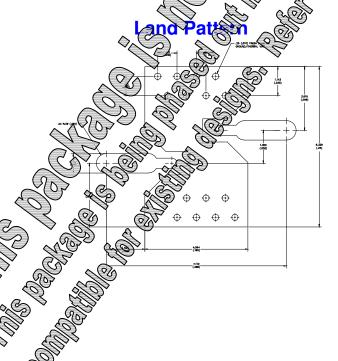
5 (6)

ns for this part are website in the "Application

ESD Rating

"XX")

on the top

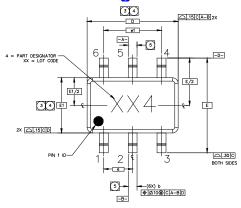

aution! ESD sensitive device.

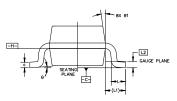
Class 1A

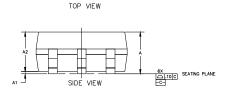
Passes between 250 and 500V Human Body Model (HBM) JEDEC Standard JESD22-A114 Standard:

MSL Rating: Level 3 at +235° C convection reflow JEDEC Standard J-STD-020 Standard:

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

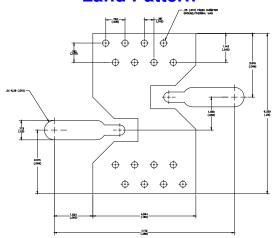



ECG001F-G (Green / Lead-free SOT-363 Package) Mechanical Information


This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is annealed matte tin over copper.

Outline Drawing

SYMBOL	MIN	MAX
A	-	1.10 (.043)
A1	0	,10 (.004)
A2	.70 (.028)	1.00 (.039)
D	2.00 (.079)	BASIC
E	2.10 (.083)	BASIC
E1	1.25 (.039)	BASIC
L	,26 (.010)	.46 (.018)
L1	.42 (.017)	REF
L2	.15 (.006)	BASIC
0	0*	8*
0 1	4*	12*
b	.15 (.006)	.30 (.012)
c	.08 (.003)	.22 (.009)
•	.65 (.026)	BASIC
e1	1.30 (.051)	BASIC



NOTES;

- DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1194, PACKAGE CONFORMS TO JEDEC MO-203, ISSUE B.
- 2. DIMENSIONS ARE IN MILLIMETERS (INCHES).
- DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER END. DIMENSION E1 DOES NOT INCLUDE INTERELAD FLASH OF PROTRUSION. NITRILEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.15 mm PER SIDE. D AND E1 DIMENSIONS ARE DETERMINED AT DATILM H.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM.

 DIMENSIONS DAND ET ARE DETERMINED AT THE OUTERMOST EXTREMES
 OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS,
 GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH
 BETWEEN THE TOP AND THE BOTTOM OF THE PLASTIC
- 5 DATUM A & B TO BE DETERMINED AT DATUM H.
- G) DMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 mm TOTAL IN EXCESS OF THE "b" DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR IS NOT LOCATED ON THE LOWER RADIUS OF THE FOOT MINIMUM SPACE BETWEEN PROTRUSION, AND, AN ADJACENT LEAD SHALL NO

Land Pattern

Product Marking

The component will be marked with a twodigit numeric lot code (shown as "XX") followed with a "4" designator on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating: Class 1A

Value: Passes between 250 and 500V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

Typical Device S-Parameters – ECG001B / ECG001B-G

S-Parameters (V_{device} = +3.4 V, I_{CC} = 30 mA, T = 25°C, calibrated to device leads)

Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-51.06	-78.50	22.77	177.87	-24.25	-0.35	-34.47	-14.76
500	-45.85	-105.39	22.61	158.52	-23.97	-2.11	-28.80	-88.38
1000	-41.11	-132.48	22.25	137.66	-23.88	-7.72	-23.20	-124.85
1500	-35.04	-155.82	21.78	117.56	-23.47	-11.71	-19.45	-147.22
2000	-32.25	-149.35	21.22	98.36	-23.29	-15.07	-17.31	-176.10
2500	-27.68	161.65	20.56	80.02	-22.64	-22.26	-15.75	160.80
3000	-25.13	146.56	19.94	62.40	-22.19	-28.01	-14.33	143.60
3500	-22.38	130.02	19.24	44.75	-21.46	-36.02	-12.76	119.33
4000	-20.32	112.40	18.52	27.97	-21.48	-45.09	-12.00	102.25
4500	-17.95	95.14	17.91	10.80	-21.10	-54.41	-10.35	83.68
5000	-14.93	76.82	17.08	-5.29	-20.43	-62.18	-9.12	67.46
5500	-14.55	61.65	16.46	-20.95	-20.18	-74.36	-8.97	52.66
6000	-12.63	48.56	15.70	-37.55	-19.59	-85.56	-7.38	34.72

Typical Device S-Parameters – ECG001C

S-Parameters ($V_{device} = +3.4 \text{ V}$, $I_{CC} = 30 \text{ mA}$, $T = 25^{\circ}\text{C}$, calibrated to device leads)

B I didilieters (device,	2((00 1111 1, 1	20 0, 00000	ated to de liee ie	uus)			
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-38.52	22.77	22.69	178.04	-24.09	0.24	-31.10	6.17
500	-25.23	56.88	22.38	158.44	-23.98	3.49	-28.72	27.28
1000	-20.31	43.10	21.61	138.96	-23.64	6.19	-25.92	32.84
1500	-17.84	29.59	20.58	121.77	-23.28	7.76	-24.77	26.47
2000	-17.09	18.28	19.59	107.50	-22.64	9.18	-25.10	26.51
2500	-16.42	10.61	18.53	94.11	-22.12	9.40	-25.71	28.82
3000	-16.50	3.67	17.52	82.88	-21.57	8.88	-27.25	38.29
3500	-16.95	-0.38	16.66	72.21	-21.00	7.18	-26.56	54.80
4000	-17.42	0.25	15.88	62.48	-20.44	6.15	-25.01	75.18
4500	-18.18	0.29	15.16	52.91	-19.91	2.81	-21.98	80.52
5000	-19.80	5.60	14.57	43.63	-19.41	-0.40	-19.64	83.31
5500	-20.34	15.89	13.95	34.44	-18.96	-4.14	-17.16	81.49
6000	-21.14	31.15	13.45	25.56	-18.61	-7.49	-15.21	78.12

Typical Device S-Parameters – ECG001F / ECG001F-G

S-Parameters (V_{device} = +3.4 V, I_{CC} = 30 mA, T = 25°C, calibrated to device leads)

Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-33.58	15.96	22.85	178.01	-24.47	-1.35	-28.60	3.58
500	-24.53	12.09	22.63	162.01	-24.14	1.89	-22.29	-35.35
1000	-32.76	32.44	22.20	144.90	-23.99	4.76	-25.75	-100.14
1500	-28.56	153.22	21.54	129.42	-23.56	7.59	-20.80	-165.24
2000	-25.13	172.50	20.74	114.94	-23.12	9.11	-17.59	175.89
2500	-28.01	-117.92	20.11	103.13	-22.71	7.41	-20.44	169.69
3000	-28.65	-133.85	19.33	91.28	-22.14	7.37	-18.13	154.41
3500	-28.35	-142.02	18.59	79.59	-21.68	4.16	-16.41	140.24
4000	-25.99	-171.80	17.77	68.13	-20.88	2.49	-14.29	124.73
4500	-22.91	160.22	17.05	57.38	-20.50	2.47	-12.47	116.41
5000	-19.69	153.85	16.39	48.12	-20.03	-0.55	-11.36	113.60
5500	-17.30	152.52	15.78	39.49	-19.55	-5.36	-11.30	114.22
6000	-15.88	144.43	15.21	30.49	-19.14	-6.76	-11.31	113.24

Device S-parameters are available for download off of the website at: http://www.wj.com